Finite-time blow-up in reaction-diffusion equations

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The finite time blow - up for the Euler - Poisson equations

We prove the finite time blow-up for C1 solutions to the EulerPoisson equations in R, n ≥ 1, with/without background density for initial data satisfying suitable conditions. We also find a sufficient condition for the initial data such that C3 solution breaks down in finite time for the compressible Euler equations for polytropic gas flows. AMS subject classification: 35Q35, 35B30

متن کامل

Finite Time Blow-up for the 3D Incompressible Euler Equations

We prove the finite time blow-up for solutions of the 3D incompressible Euler equations, which happens along the fluid particle trajectories starting from a set of points. This set is specified by the relation between the deformation tensor and the Hessian of pressure both coupled with the vorticity directions, associated with the initial data. As a corollary of this result we prove the finite ...

متن کامل

Finite time blow-up in dynamical systems

A new method to detect finite-time blow-up in systems of ordinary differential equations is presented. This simple algorithmic procedure is based on the analysis of singularities in complex time and amounts to checking the real-valuedness of the leading order term in the asymptotic series describing the behavior of the general solution around movable singularities. Illustrative examples and an ...

متن کامل

Finite time blow - up for the

We consider the L 2-gradient ow associated with the Yang-Mills functional, the so-called Yang-Mills heat ow. In the setting of a trivial principal SO(n)-bundle over R n in dimension n greater than 4, we show blow-up in nite time for a class of SO(n)-equivariant initial connections.

متن کامل

Dirichlet Boundary Conditions Can Prevent Blow-up in Reaction-diffusion Equations and Systems

This paper examines the following question: Suppose that we have a reaction-diffusion equation or system such that some solutions which are homogeneous in space blow up in finite time. Is it possible to inhibit the occurrence of blow-up as a consequence of imposing Dirichlet boundary conditions, or of other effects where diffusion plays a role? We give examples of equations and systems where th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical and Computer Modelling

سال: 1993

ISSN: 0895-7177

DOI: 10.1016/0895-7177(93)90226-o